Fighting EPO Viruses

Piotr Bania,

This short article describes the so-called Entry-Point Obscuring (EPO) virus coding tect
primarily through a direct analysis of the Win32.CTX.Phage virus. The reader should ki
basics of IA-32 assembly and the main elements of the Portable Executable (PE) file st
fully understand this article. The author also advises the reader to review the Win32.C
description written by Peter Szor and Wason Han , since this article does not cover all
of the virus.

Why EPO and Win32.CTX.Phage

Entry-point obscuring viruses are very interesting because of the very difficult nature of its det
disinfection and removal. Nowadays the EPO technique is used in many different ways, howeve
Win32.CTX.Phage has been chosen for this article because it was written by the same author o
infamous viruses as Win9x.Margburg (one of the first Windows9x polymorphic virus, which firsi
the wildlist) and Win9x.HPS. The author of these viruses is known for his difficult-to-detect and
disinfect creations. CTX.Phage in particular involves many techniques that make the disinfectio
highly difficult, even after the virus is fully understood.

Understanding the Entry-Point Obscuring (EPO) technique

When a virus infects a file, it must find some way to attain control and be executed. Most of th
infectors use the most common way of doing this -- they simply change the entry-point of the
application and make it point to the virus body. An example is shown below.

Original EXE Infected EXE

Entry-point: 0x1000 (.code section) | Entry-point: 0x6000 (.reloc section)

Such virus activity is very easy to detect, as it usually results in files whose entry-point resides
code section, and are therefore marked as suspicious by a virus scanner. Here is some exampl
detects this type of infection:

(checks if the 'entry-point section' is the last section):

// ——— snip of scanner code ——
... (snip) ...
sections = pPE->FileHeader.NumberOfSections;
pSH = (PIMAGE_SECTION_HEADER) ((DWORD)mymap+pMZ->e_lfanew + sizeof (IMAGE_NT_HEADERS)) ;
while (sections != 0) {
if (IsBadReadPtr (&pSH,sizeof (PIMAGE_SECTION_HEADER)) == TRUE)
{
printf ("[-] Error: Bad PE file\n");

goto error_mode4;

}

char *secname=(char *) pSH->Name;
if (secname == NULL) strcpy (secname, "NONAME") ;

startrange=(DWORD) pSH->VirtualAddress + pPE->OptionalHeader.ImageBase;
endrange= (DWORD) startrange + pSH->Misc.VirtualSize;

... (snip) ...

if (pSH->VirtualAddress <= pPE->OptionalHeader.AddressOfEntryPoint && \
pPE->OptionalHeader.AddressOfEntryPoint < pSH->VirtualAddress +

http://www.securityfocus.com/print/infocus/1841 2005-07-07

pSH->Misc.VirtualSize)

printf (" [+] Checking call/jump requests from %s section (EP)\n",
secname) ;
pSHC = pSH;

pSH++;
sections——;

}
pPSH-—;

if (pSHC == NULL)
{
printf (" [-] Error: invalid entrypoint\n");
goto error_mode4;

printf (" [+] Starting heuristics scan on %s section...\n\n",pSHC->Name) ;
if (pSHC == pSH)
{
printf("[!] Alert: Entrypoint points to last section (%s) -> 0x%.08x\n",

pSH->Name, pPE->OptionalHeader.AddressOfEntryPoint +
PPE->OptionalHeader.ImageBase) ;

printf("[!] Alert: The file may be infected!\n");
printf (" [+] No deep-scan action was performed\n");
goto error_mode4;

... (snip) ...
// —=- snip of scanner code ———————————————— -

The very reason why the EPO technique was developed was to avoid virus scanner detection. A
obscuring virus is a virus that doesn't get control from the host program directly. Typically, the
the host program with a jump/call routine, and receives control that way. While there are many
the EPO technique, in this article we will look at one of them in detail.

The EPO technique used in Win32.CTX.Phage

The Phage virus doesn't modify the entry-point of an infected file, instead it scans all over the |
section and searches for API calls generated by Borland or the Microsoft linker. When such codt
virus checks that the destination address points somewhere inside the IMPORT section. If the c
import call, Phage gets a random number which tells the virus to patch the current processed i
find next one. Figures 1, 2, 3, and 4 below show a few example schemas.

http://www.securityfocus.com/print/infocus/1841 2005-07-07

aa4a1a828
aad4a1821
BEdE1822
BE4E16822
BE4E 16825
BE4E1682A0
BE4E1682F
ga4818:34
aa4a1832
BE48183E
BE4E1842
BE4E1842
BE4E1840
BE4E1652
BE4E1657
aa4a1asc
Ba4E1861
BE4E] BEE
BE4E 1857
BE4E1852
BE4E1859
BE46185R

aa4a1a828
aa4a18:=1
aa4a1a:22
BE4E1822
BE4E 1625
BE4E182H
BE4E1682F
BE461624
gE4818:39
BE48183E
aa4a1a4:2
BE481a843
BE4E1840
BE4E 1652
BE4E1657
BE4E165C
BE4E1851
BE4E 1855
gE481887
BE4E1863
BE481852

BE4E1 B8R

AE4E1856
aE4a1a59
AE4E185H
BE4E185E
AE4E1850c
AE4E185F
BE4E 165
BE4E 1867
BE4a1889
BE46186F

BE481856
BE4E1852
BE4E185H
BE4E185E
BE4E1850
BE4E185F
ge481854
BE481 865
BE48 1860
BE4E18a0

: 5565 ES

. FF15 24404066
2302

28 HOF
a8 HOF)
ey R 0xE& - borland linker style
A FLSH @
E2 EE827HAnE CALL <JMP.%KEBHELZ2Z2.E= itProcess>
E& SF27YBana CALL <JHMP.&USER2Z2.HMes=ageBorA>
EZ 422788668 |CALL <JMP.%KERMELZZ.CloseHandler
EZ EE27VEang CALL <JMF.&%KERHELZZ.CreateFilerdx
E& SEZVBAna CALL <JMF.&%KERHELZZ.Beep
E& 4527Hana CALL «<JMF.&KERHELZZ.Ex itThreads
E2 EES27HARE CALL <JMF.&%KERHELZZ. TerminateProcess s
E2 E927HARE CALL <JMP.%KERHELZZ.UirtualAlloc>
E2 SRZ7YHARE CALL <JMP.&%KEBHELZ2Z2.UirtualFres?
E& 2D27YEana CALL <JHMP.&KERHELZZ.HeapAl locx
EZ SCZYEEEE | CALL <JMP.%KERMELZZ.GlobalAl lock
E& 2927Bang CALL <JMF.&%KERHELZZ.ReadFileX
E& 4C27Eang EB%L “dMP . &KERHELZZ. _ lopen
HBE + Potencial target area
HOP for CTX.Phage
HOP

CreateFileR

Beep

ExitThread
LTerminateProcess
LUirtualAl Loz
LUlirtualFree
LHeapAl Lo
LG lobalAL Loc
LFReadFile
L_ lopen

ExitCode = A&

ExitProcess
LHeszageBoxA
CloseHandle

Figure 1. Original application (ENTRYPOINT: 0x1000 — LINKER: BORLAND).

LHeszageBoxA
CloseHandle
CreateFileR
Beep
ExitThread
LTerminateFrocess
irtualAl loc
UirtualFree

HeapAl loc
GlobalAl loc
LReadFile
L_ lopen

5 NP

20 HOF — Patched by
ar i

£Q_BE l-P%HE *J the virus

ES BO72000E = COLL 2.AR4B8357

ES SFE7E0BB | CALL <JHP.&LSERZZ. MeszageBouAs

EZ 42570088 | CALL <JHP.&KERMELS2.CloseHandles

ES CEZ7EEEE | CALL <JMP.&KERMELS2.CreateF i LeAs

ES SEZYEEEE | CALL <JHF.&KERMELSZ.EBesps

ES 4527B00E | CALL <JHF.&KERMELSZ.Ex it Thread?

ES SHovBEREB | CALL <JHF.&KERMELSZ. TerminateFrocess?

ES CaoyBeee | CALL <JHF. &KERMELSZ. UirtualAllocs

E: CAZYBEEE | CALL <JHF.&KERMELSZ.UirtualFree s

ES S057B0B | CALL <JHP.&KERMELZ2.HeapA L Loos

ES CCoPBome | CALL <JHP.SKERMELZ2.GlobalAl locs

EZ 29570008 | CALL <JHP.&KERMELZE.ReadFiles

EZ 4027E0RE | CALL <JMP.&KERNELZZ._ Lopen s

5g HOF

S MNP

S MNP

A MNP

4@ NP

Figure 2. Infected application (ENTRYPOINT: 0x1000 - LINKER: BORLAND).

S3EC 58
53

Ca

SUE ESF,55
FUSH EE=

|] I Dol W el

E 0xFF - Microsoft linker style
FUSH EDI sty

MOU_OWoRD _PTR_SS:[ERP-121,ESP
CALL OWORD PTR DS:C<&KERMEL32.Getllersio

A0 EDR, EOF
. SR04 MO 0L, AH
. 8915 C4E44p88| MOU OWORD PTR DS:[4854C41,EDH
SBCE ML ECH, ERX
Figure 3. Original application (ENTRYPOINT: 0x1039 - LINKER
83EC B3 SUB ESP,E2
53 FUSH EB=x -
E% EHEH EE% | In_lectebd l:a_II (p
2955 ER MO OWaRD _PTE S5:TERF-1521,FE5F ¥ virus
ES Z2&73E0E 'CALL 2.08485838A =

. 48

HEZZ
D25A D45915C4
o4

HOOC EYTE FTR DS [EExI.OH

ROR EYTE FTR D35: [EDX+C41552041, CL
FUSH _ESP

IMC ER=

kernel3z2.Getlersion

|—.._ Potencial target area

for the virus

: MICROSOFT).

atched)

Figure 4. Infected application (ENTRYPOINT: 0x1039 - LINKER: MICROSOFT).

The above schemas show how the CTX.Phage EPO virus works. As mentioned before, the virus
instruction by overwriting it with a randomly found call. As the application size grows (and also
call range from the entry-point), it becomes increasingly difficult to find the injection of the vir
other hand, while using this EPO technique reduces the risk of virus execution, there are also s
when the "call-to-virus" will not be executed at all.

At this point, let's find a way to detect such injections such that it does not cause false alarms.

Finding the virus injection

How difficult is it to find CTX.Phage injections? First of all, the virus inserts a call instruction as

E8 ?? ?2? 2? ??|CALL XXXXXXXX

http://www.securityfocus.com/print/infocus/1841

2005-07-07

Where:

e E8 is the CALL instruction opcode
e 2?22 2?2 ?? is the instruction operands (destination)

Before we go any further, let's summarize all the information we know about the current EPO:

1. The injection is always done somewhere behind the entry-point.
2. The injected call executes the virus code which is stored always in last section (this bit of
really helpful).

As the reader probably knows, we could simply search for OXE8 bytes (call opcodes) but there
possibility that we might find some "suspicious" call that thands in non-call instruction, for exat

68 332211E8|PUSH E8112233|

As you can see, this is the push instruction, but the scanner finds the E8 byte and could consid
Unless we don't want to build up our disassembler engine (which is very long and hard work) w
another way. Yes, you guessed it: we need to add a condition for the E8 byte scanning routine,
that the call always executes code that resides in last section! Now that everything is clear, hel
conditions we require:

temp_loc = (DWORD) ((DWORD)pSHC->VirtualAddress + i + (*(DWORD*)loc)) + 5;
if (temp_loc >= pSH->VirtualAddress && temp_loc <= pSH->VirtualAddress + pSH-
>Misc.VirtualSize) BAD_CALL = 1;

Where:

o temp_loc is the calculated destination of found call (E8 opcode)
e PSH is the header of last section
e + 5 is the size of call instruction (opcode + destination)

A sample temp_loc calculation might look as follows:

Scanned instruction:
00401025 \. E8 58270000 CALL

Calculation:
temp_loc = 1025 (virtual address) + 00002758 (call destination) + 5 (size of call instrtu

If the temp_loc address resides somewhere between last section's virtual address (start) and tl
section's virtual address + its virtual size, the call is marked as suspicious. Here is the short sn
author's scanner:

(searches for call and jump instructions and checks theirs destinations):

// ——— snip of scanner code ——— -
... (snip) ...

printf ("[+] Starting from offset: 0x%.08x\n",pPE->OptionalHeader.ImageBase +
pSHC->VirtualAddress);

http://www.securityfocus.com/print/infocus/1841 2005-07-07

for (i = 0; (i '= pSHC->SizeOfRawData); i++)
{

loc = (DWORD) ((DWORD)mymap + pSHC->PointerToRawData) + 1i;
if ((*(BYTE*)loc) == O_CALL || (*(BYTE*)loc) == O_JMP)
{
loc++;
temp_loc = (DWORD) ((DWORD)pSHC->VirtualAddress + i + (*(DWORD*)loc)) + 5;

if (temp_loc >= pSH->VirtualAddress && temp_loc <= pSH->VirtualAddress + \
pSH->Misc.VirtualSize)

printf("[!] Alert: Detected request to %s(0x%.08x) section at: 0x%.08x\n
pSH->Name, pPE->OptionalHeader.ImageBase + temp_1
pSHC->VirtualAddress + pPE->OptionalHeader.ImageBase + 1i);

if (where_ctx == NULL)

{
where_ctx = (DWORD) (pPE->OptionalHeader.ImageBase + temp_loc);
caller = (DWORD) (pSHC->VirtualAddress + \

pPE->OptionalHeader.ImageBase + 1i);

upa = (DWORD) (pSH->VirtualAddress + pPE->OptionalHeader.ImageBase);
sv = loc - 1;

}

count++;

}
loc——;
}
printf (" [+] Scan finished, %d suspected instruction(s) found.\n",count);

. (snip) ...
// —=- snip of scanner code ———————————————— -

While scanning files with this code, I haven't seen any false alarms, so it is probably one of the
or techniques one can use to find such virus injections.

Clearing the code, deleting the injection

Since our scanner is able to find the injected call, we can move on. Now we need to reload the
On other words, we need to clear the injection. To do this we should first know more informatic
virus.

1. The injected call flows the execution to a polymorphic decryptor, which is generated in a
several decryption phases can occur, from 4 to 7.

2. The virus must reset the "hooked" call before returning the execution to the host. Otherw
infected application may fault. The original instruction is saved somewhere inside the virt

The main problem is that the virus is encrypted and the polymorphic decryptor will decrypt the
several times. We need to obtain the clear virus body in order to reset the original instruction.

those bytes directly since the code is encrypted. There are a couple of solutions to clear/bypass
polymorphic decryption layers, such as using emulation and so on. Writing a full emulator is su
quick and easy job, however a different solution does exist. Most Windows viruses use the Getf
API to obtain needed API addresses for their future execution. Lets try to set a breakpoint at G
(of course to avoid false GetProcAddress requests. First we need to execute the virus injection,
since we have located it before). This is shown below in Figure 5.

http://www.securityfocus.com/print/infocus/1841 2005-07-07

hModu le = FFEGHEOE [(kernel32)
FrocHameOrOrdinal = "CreateFileR™

BE4BEEAFS
BE12FFE3(FrECHEEE
BA12FFEC| FFECFRDE

The call came from 0x406AF3, which in fact points to the decrypted body. Indeed, the poly lay:
bypassed! Here is the sample proof using the decrypted string, shown in Figure 6.

[EHLL to GetProcAddress from 2.08485AFS

Figure 5. GetProcAddress.

AE4E614%| C3 5B 28 28 43 54 53 28 50 68 61 67 65 28 56 69| FL CTHX Phage Ui
BE4EE159) 72 Y5 V3 28 42 69 6F 43 6F 64 65 64 28 62 V2 28| rus BioCoded bu

BE4EE1ES) 47 Y2 69 B9 6F 20 ZF 28 32 39 41 28 268 44 &9 VI GriYo < 29 Dis
BE4EE179) 62 6C &1 69 60 65 V2 3H 208 54 62 69 ¥3 28 72 6F|claimer: Thiz so
BE4EE129) 66 74 FF 61 V2 65 2B 68 61 Y2 2@ 62 65 65 GE 28| ftware has been

BE4A5199) 64 65 72 69 67 6E 65 64 20 66 &F F2 28 72 65 P3| designed for res
GE4EE1R%) 65 61 P2 63 62 2B VB V5 ¥2 YO &F 2 65 v3 28 &F|earch purposes o
AE4861E2) 6E 6C 72 2E 2@ 54 63 65 28 61 ¥5 ¥4 63 6F V2 28(nly. The author

AE4E61C9| 69 Y3 28 6E 6F ¥4 28 V2 65 73 7@ &6F 6E Y3 69 &2| is not responsib
EE4EE109 6C 65 28 &6 6F Y2 2@ &1 6E V9 28 VA ¥2 6F &2 &C| le for any probl
BE4EE1ES | 65 60 V2 28 62 &1 V5 ¥2 65 &4 28 64 F5 65 28 74| ems caused dus t
BE4EE1FY) 6F 28 &3 &0 ¥B Y2 &F ¥B 65 Y2 2B &6F ¥2 20 &9 &C| o improper or il
BE4EE2E%) 6C 65 &F 61 G6C 2B V5 ¥2 61 &7 65 28 6F &6 28 69 legal usage of i
BE486219| 74 28 28 S0 ES 00 88 88 88 S0 21 ED 22 32 48 88|t JR.... JivT2E.

Figure 6. Decrypted string.

To make the disinfector able to break on GetProcAddress, we need to build a small debugger (v
the fastest way to do it). This is easy since Windows platform already comes with Debug APIs.

Basically, following the code debugs the virus process, modifies the original entry of GetProcAd
(nop), 0x90 (nop), OXCC (int 3 — breakpoint) and takes over the EXCEPTION_BREAKPOINT onl
from the "hooked" range:

(debugs process, executes virus call, hooks GetProcAddress and obtains caller (virus) ac

// —=— snip of scanner code ———————————— -

... (snip) ...

unsigned char patch[4] = { 0x90, 0x90, O0xCC };

_GetProcAddress = (DWORD) GetProcAddress (LoadLibrary ("KERNEL32.DLL"), "GetProcAddress");

GetStartupInfo (&si);
if (!CreateProcess (NULL, temp_name,NULL, NULL, FALSE, DEBUG_PROCESS +
DEBUG_ONLY_THIS_PROCESS, NULL, NULL, &si, 1))

printf (" [-] Error: cannot create process, error: %d\n",GetLastError());
goto error_di;

}

printf ("\n[+] Process created, pid=0x%.08x\n",pi.dwProcessId);
printf ("[+] Starting emulation engine...\n");

while (1)
{
WaitForDebugEvent (&de, INFINITE) ;
if (de.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) {
printf("[!] Error: ups process exited...\n");
goto error_term;

}

if (de.dwDebugEventCode == EXCEPTION_DEBUG_EVENT)
{
if (de.u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
if (de.u.Exception.dwFirstChance == TRUE)
{
printf (" [+] Exception occured at: 0x%.08x, passing to
program.\n",de.u.Exception.ExceptionRecord.Excep

ContinueDebugEvent (de.dwProcessId,de.dwThreadId, \
DBG_EXCEPTION_NOT_HANDLED) ;
}

else

{

printf (" [-] Hard error occured, terminating the program\n");

http://www.securityfocus.com/print/infocus/1841 2005-07-07

printf ("[-] Disinfecting failed\n");

goto error_term;

}

if (de.u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_BREAKPOINT)
{
if (fe == NULL)
{
fe = 1;

printf (" [+] Reached break point at 0x%.08x\n",

de.u.Exception.ExceptionRecord.Exceptio:

printf (" [+] Modifing 4 bytes at host stack\n");

tc.ContextFlags = CONTEXT_CONTROL;
if (!GetThreadContext (pi.hThread, &tc))

{

printf (" [-] Failed to get thread context, error: %d\n",
GetLastError());

printf (" [-] Disinfecting failed\n");

goto error_term;

}

ReadProcessMemory (pi.hProcess, (void*)tc.Esp, &stack_v,4,NULL);

if (stack_v == NULL)
{

printf (" [-] Error: reading from stack failed\n");
printf (" [-] Disinfecting failed\n");

goto error_term;

tc.Esp = tc.Esp - 4;
caller += 5;

if (!WriteProcessMemory (pi.hProcess, (void*)tc.Esp, &caller, 4,

NULL))

printf (" [-] Error: writing to stack failed\n");
printf ("[-] Disinfecting failed\n");

goto error_term;

}

printf (" [+] Stack modified,

tc.Esp, caller);

0x%.08x added caller -> 0x%.08x\n", \

printf (" [+] Redirecting EIP to 0x%.08x...\n",where_ctx);

tc.Eip = where_ctx;

if (!SetThreadContext (pi.hThread, &tc))

{

printf("[-] Failed to set thread context, error: %d\n", \

GetLastError());

printf (" [-] Disinfecting failed\n");

goto error_term;

}

VirtualProtectEx (pi.hProcess, (void*) _GetProcAddress, sizeof (patch)

PAGE_READWRITE, &oldp);

WriteProcessMemory (pi.hProcess, (void*) _GetProcAddress, &patch,

sizeof (patch), NULL);

VirtualProtectEx (pi.hProcess, (void*) _GetProcAddress, sizeof (patch)

http://www.securityfocus.com/print/infocus/1841

2005-07-07

oldp, &oldp);

printf (" [+] Placed breaker at 0x%.08x\n",_GetProcAddress);

ContinueDebugEvent (de.dwProcessId, de.dwThreadId, DBG_CONTINUE) ;

if ((DWORD) de.u.Exception.ExceptionRecord.ExceptionAddress >
_GetProcAddress && (DWORD) de.u.Exception.ExceptionRecord.Exception?
< _GetProcAddress + sizeof (patch))

printf (" [+] Virus reached the breaker at 0x%.08x\n", \
de.u.Exception.ExceptionRecord.ExceptionAddress) ;

tc.ContextFlags = CONTEXT_CONTROL;
if (!GetThreadContext (pi.hThread, &tc))

{
printf("[-] Failed to get thread context, error: %d\n", \

GetLastError());

printf ("[-] Disinfecting failed\n");
goto error_term;

}

ReadProcessMemory (pi.hProcess, (void*)tc.Esp, &stack_v, 4, NULL);
printf (" [+] Virus request captured from 0x%.08x\n",stack_v);
. (snip) ...

. (snip) ...
ContinueDebugEvent (de.dwProcessId, de.dwThreadId, DBG_EXCEPTION_NOT_HANDLED) ;

... (snip) ...
// ——— snip of scanner code

Now when we have the clean virus body we can try to locate the original instructions. Since CT
doesn't modify the bits from the host code section, it has only one way to reset the original inst
using WriteProcessMemory API (well, it could use VirtualProtect API to get write access to host
and then write the original bytes, but it doesn't). So here is the break on WriteProcessMemory,

Figure 7.

BE1ZFFEC| FFFFFFFF || hProcess = FFFFFFFF
BE1ZFF96| e6481625 | Address = 401025
BA1ZFF34| BASQE2CE|| Buffer = BE3ARZCE
BA1ZFFI2| BEEAEEEE|| ButesTollcite = &
BA1ZFFAC| BEBREEEE|LpEYteslivitten = MULL

Figure 7. Break on WriteProcessMemory.

BBSHBEDB‘[CHLL to WriteProcessMemory from BEIAEZ0Z

As you can see, BytesToWrite is equal to 5 and Address is equal to the location found by the sc
only problem is that the call comes from allocated memory (the virus allocated it, copied itself .
execution from there). But lets try to check the caller address below in Figure 8.

FUSH § -+—— NumberOfBytesWiritten {const))
chWrite in:unst}l
call $45 {push old bytes
{const)
address of injection (const)

BEZAEZEC| S0 B@
BEZABZEBE| &A B5
BEZABZCH| ES BSAAEEEE
HEZAEZCE| ES SEEVA88a

E -
BE3AG2CA
host code original bytes

BEZAEZCH| 5@ ERY -

HEZAAZCE| FFI5 ACc4F4a8a OWORD FTR 55: [EEF+4E84FAC] --—— GetCurrentProcess

BEZAAZ01) 56 ERY - hProcess
BEZABZ0Z2] FF95 444F4880 OWORD PTR S5: [EEP+484F44] -=————— WriteProcessMemory

Figure 8. Checking the caller address.

The "const" bytes (for example those marked in the picture above) are:

http://www.securityfocus.com/print/infocus/1841 2005-07-07

6A 00 6A 05 ES 05 00 00 00 ?? 2?2 ???2? 2?2?50
Where:

6A 00 is push 0

6A 05 is push 5

E8 05 00 00 is call $+5

?? 2? ?? ?? ?? is the original host bytes (wildcard)
50 is push eax

Here is the signature, useful to find original host bytes (there are the same in every generatior
these ones are located in the allocated memory. So the question is: does the same bytes exists
inside the unencrypted body of virus, in other words, somewhere inside last section? Lets try tc
Figure 9.

BE4862EC| S0 B8 FUSH &

BB4862EE| 6H 85 PUSH 5

BE4EEZCH) ES BSBEAEEEA CHLL Z.884852CH

BE4EE2CE| ES SEEVAEEA CHLL Z2.B88488A22

BE4E62CH| 5@ PUSH ERX

BE4EE2CE| FF95 BC4F488E | CALL DWORD PTR S5: [EBP+4B84FGC]
BE465201) 5@ FUSH ERX

BE4E5202) FF95 444F 4088 CALL DOWORD PTR 55: [EEBP+4B84F44]
Figure 9. Scanning the virus.

Indeed, the same bytes were found in "native" virus location. The GetProcAddress was called b
from O0x406AF3, as you can see the original bytes that lay far before it. Here is the code examg
scanner which searches for the original bytes by using the signature. The same could be done |
0x406AF3 by some const size, but regardless here it is:

(searches the virus body for the original bytes by using a signature, it also repairs tt
reading original bytes directly to mapped file):

// ——-— snip of scanner code ——— -
... (snip) ...
unsigned char ctx_sig[l5] = { Ox6A, 0x00, Ox6A, 0x05, OxE8, 0x05, 0x00, 0x00, 0x00,

0x90, 0x90, 0x90, 0x90, 0x90, 0x50 };
unsigned char ctx_fly[15];

ReadProcessMemory (pi.hProcess, (void*)tc.Esp, &stack_v, 4, NULL);
printf (" [+] Virus request captured from 0x%.08x\n",stack_v);
printf (" [+] Scanning backwards to 0x%.08x\n",upa);

while (1)
{
if (!ReadProcessMemory (pi.hProcess, (void*)stack_v, &ctx_fly,
sizeof (ctx_sig), NULL)) break;

if (stack_v <= upa) break;
found = 1;
for (int 1i=0; ii < sizeof (ctx_sig); 1ii++)

{

if (ctx_sig[ii] !'= ctx_fly[ii])
{
if (ctx_sig[ii] != 0x90)
{
found = 0;
break;
}
}
}
if (found == 1)

{

http://www.securityfocus.com/print/infocus/1841 2005-07-07

printf (" [+] Orginal bytes were found at 0x%.08x\n", stack_v + 9);

printf ("[!] Repairing the broken instruction.\n");

ReadProcessMemory (pi.hProcess, (void*) (stack_v + 9) , (void*) sv, 5, NULL);
printf("[!] The file was disinfected!\n");

getch () ;

goto error_term;

}

stack_v—-—;

t

if (found == 0)

{
printf ("[-] Error: no signature was found.\n");
printf ("[-] Disinfecting failed\n");

goto error_term;

}

... (snip) ...
// ——-— snip of scanner code ————— -

The full EPO heuristics scanner, together with Win32.CTX.Phage disinfector, is attached to the |
the paper. Here is a screenshot from that application, as shown in Figure 10.

WINDOWS" System32hcmd.exe - epos

EPO-SCANHER — {c?» Piotr Bania
http:rsph.specialized.info

Trying to scan: d:sasms2.inf

Imagebase: x40 — Entrypoint: BxB00016000 (Bx00401000>
Checking callsjump requests from CODE section <EP>

Starting heuristics scan on CODE section...

Starting from offset: Bx00401000

Alert: Detected request to .reloci(BxAB4B83Ba> =section at: BxBA481625
Scan finished, 1 suspected instruction<s? found.

Warning: the file may be infected!?

ook

-
o el b b e

. g

Do you want to try dis—infect the file?

Warning: the file may be executed if this is not the CTH.Phage
infection.

Disinfect: Cyles ~ <n’o 7

Process created,. pid=BxBHBAA5fHA

Starting emulation engine...

Reached break point at BxY7E75a58

Modifing 4 huytes at host stack

Stack modified. BxB012fb34 added caller —> BxBB48182a
Redirecting EIP to BxBB48838a...

Placed breaker at Bx77e?hldZ2

Exception occured at: Bx@B486365,. passing to program.
Uirus reached the breaker at Bx77e7h3ii4

UVirus request captured from BxB0486af9

Scanning backwards to BxBH4868060

Orginal byutes were found at BxB04862ch

Repairing the broken instruction.

The file was disinfected?

[?1
[?1
[?1
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]

Figure 10. Screenshot of the EPO scanner.
Curtains down - last words

I hope you have enjoyed this short article on EPO techniques. The disinfector discussed in this .
cancels virus injections, of course - the virus still resides in last section but fortunately it will ne

http://www.securityfocus.com/print/infocus/1841 2005-07-07

executed. However, this provides an opportunity for the reader to add some kind of virus "over
really an easy job and a good task to undertake.

If you have any comments don't hesitate to contact the author. The author would also like to tl
for moral support.

Further Reading

1. http://securityresponse.symantec.com/avcenter/venc/data/w32.ctx.and.w32.cholera.hti
Szor and Wason Han.

2. http://vx.netlux.org/29a/29a-4/29a-4.223 EPO by GriYo / 29a.
3. "The Art of Computer Virus Research and Defense" by Peter Szor

About the author

Piotr Bania is an independent IT Security/Anti-Virus Researcher from Poland with over five yez
experience. He has discovered several highly critical security vulnerabilities in popular applicat
RealPlayer. More information can be found on his website.

Code

Here is the full source code of the scanner and disinfector. If you have problems with formatti
source and precompiled binary is also available on SecurityFocus or through author's website.

Privacy Statement
Copyright 2005, SecurityFocus

http://www.securityfocus.com/print/infocus/1841 2005-07-07

